SCIENTIFIC PUBLICATION: Space-borne frequency comb metrology

Space-borne frequency comb metrology

M. Lezius, T. Wilken, Ch. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, Th. Hülsing, T. W. Hänsch, & R. Holzwarth

Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be improved by orders of magnitude when referencing to state-of-the-art optical clock transitions.

Full article:

Optica Vol. 3, p. 1381 (2016)